Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 20, 2026
-
Free, publicly-accessible full text available March 30, 2026
-
It is challenging to deploy 3D Convolutional Neural Networks (3D CNNs) on mobile devices, specifically if both real-time execution and high inference accuracy are in demand, because the increasingly large model size and complex model structure of 3D CNNs usually require tremendous computation and memory resources. Weight pruning is proposed to mitigate this challenge. However, existing pruning is either not compatible with modern parallel architectures, resulting in long inference latency or subject to significant accuracy degradation. This paper proposes an end-to-end 3D CNN acceleration framework based on pruning/compilation co-design called Mobile-3DCNN that consists of two parts: a novel, fine-grained structured pruning enhanced by a prune/Winograd adaptive selection (that is mobile-hardware-friendly and can achieve high pruning accuracy), and a set of compiler optimization and code generation techniques enabled by our pruning (to fully transform the pruning benefit to real performance gains). The evaluation demonstrates that Mobile-3DCNN outperforms state-of-the-art end-to-end DNN acceleration frameworks that support 3D CNN execution on mobile devices, Alibaba Mobile Neural Networks and Pytorch-Mobile with speedup up to 34 × with minor accuracy degradation, proving it is possible to execute high-accuracy large 3D CNNs on mobile devices in real-time (or even ultra-real-time).more » « lessFree, publicly-accessible full text available July 22, 2026
-
Recent years have witnessed increasing interest in machine learning (ML) inferences on serverless computing due to its auto-scaling and cost-effective properties. However, one critical aspect, function granularity, has been largely overlooked, limiting the potential of serverless ML. This paper explores the impact of function granularity on serverless ML, revealing its important effects on the SLO hit rates and resource costs of serverless applications. It further proposes adaptive granularity as an approach to addressing the phenomenon that no single granularity fits all applications and situations. It explores three predictive models and presents programming tools and runtime extensions to facilitate the integration of adaptive granularity into existing serverless platforms. Experiments show adaptive granularity produces up to a 29.2% improvement in SLO hit rates and up to a 24.6% reduction in resource costs over the state-of-the-art serverless ML which uses fixed granularity.more » « lessFree, publicly-accessible full text available March 6, 2026
-
Data redundancy is ubiquitous in the inputs and intermediate results of Deep Neural Networks (DNN) . It offers many significant opportunities for improving DNN performance and efficiency and has been explored in a large body of work. These studies have scattered in many venues across several years. The targets they focus on range from images to videos and texts, and the techniques they use to detect and exploit data redundancy also vary in many aspects. There is not yet a systematic examination and summary of the many efforts, making it difficult for researchers to get a comprehensive view of the prior work, the state of the art, differences and shared principles, and the areas and directions yet to explore. This article tries to fill the void. It surveys hundreds of recent papers on the topic, introduces a novel taxonomy to put the various techniques into a single categorization framework, offers a comprehensive description of the main methods used for exploiting data redundancy in improving multiple kinds of DNNs on data, and points out a set of research opportunities for future exploration.more » « less
An official website of the United States government
